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Abstract
The success of Berry phases in quantum mechanics stimulated the study of
similar phenomena in other areas of physics, including the theory of living
cell locomotion and motion of patterns in nonlinear media. More recently,
geometric phases have been applied to systems operating in a strongly stochastic
environment, such as molecular motors. We discuss such geometric effects in
purely classical dissipative stochastic systems and their role in the theory of
the stochastic pump effect (SPE).

PACS numbers: 03.65.Vf, 05.10.Gg, 05.40.Ca

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The discovery of the Berry phase [1] revolutionized the study of many quantum-mechanical
phenomena. To explain this discovery, consider a quantum system with a Hamiltonian Ĥ (k),
where k = k(t) represents a vector of control parameters that can change with time along
a prescribed path. The state of the quantum system is described by a complex-valued
wavefunction �. However, the physical state itself only determines its wavefunction up
to a phase because the wavefunctions � and eiφ� define the same physical state. We assume
that, initially, the wavefunction is in one of the nondegenerate eigenstates of the Hamiltonian
Ĥ (k).

If the control parameters k change with time adiabatically slowly, then the Hamiltonian
is explicitly time dependent but the adiabatic theorem of quantum mechanics [2] guarantees
that the wavefunction will remain an instantaneous eigenstate of the Hamiltonian Ĥ (k(t))

during the evolution. Assume also that control parameters are changing along a closed
contour in the parameter space, so that at the end of the evolution they return to the initial
values, as in figure 1. According to the adiabatic theorem, after completing the cycle, the
physical state of the system should coincide with the initial one. This theorem does not mean
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Figure 1. A closed contour in a control parameter space.

that the phase of the wavefunction returns to the initial value. Careful examination shows [1]
that the phase picked up after a cyclic evolution can be written as a sum of two components

φ = φdyn + φB, (1)

where the dynamic phase φdyn = − ∫ T

0 E(t) dt appears even when parameters are fixed, T
is the time of cyclic evolution, E(t) is the energy determined as the instantaneous eigenvalue
of the Hamiltonian Ĥ (k(t)), and we assume that h̄ = 1. The second contribution in (1) is
called the Berry phase. It has no stationary counterpart and is purely geometrical, in the sense
that it depends only on the choice of the Hamiltonian and on the path in the parameter space.
In particular, it does not depend explicitly on time of the evolution T or on the rate of motion
along the contour. Given the dependence of the eigenstate |u〉 of the Hamiltonian on k in some
gauge, the Berry phase is given by

φB =
∮

c
A · k, A = 〈u|i∂ku〉, (2)

where c is the contour in the space of control parameters, and A is called the Berry connection
(see Griffiths [3] for a pedagogical derivation). The cyclic Berry phase is gauge invariant and
has measurable effects, which have been confirmed experimentally.

Berry’s discovery has a rich prehistory. As Berry himself pointed out [4], a number
of effects in quantum mechanics had been related to the unusual phase evolution of the
wavefunction even before Berry’s discovery [1]. Other historical antecedents can be found,
for example, in the first efforts to create a semiclassical theory of the anomalous Hall effect
[5, 6]. However, it was Berry’s work that unified all these known geometric effects under
a universal theoretical framework. This framework has proved very useful in uncovering
new effects and has provided the theoretical groundwork for entire branches of physics such
as topological quantum computations [11], the quantum theory of polarization [10] and the
theories behind various extraordinary Hall effects [7–9].

The Berry phase is an example of the anholonomy effect encountered in the theory of
differential equations. Anholonomy can be non-rigorously defined as failure of vectors return
to their initial values after a parallel transport along a closed contour.

Since there are both quantum-mechanical and classical-mechanical antecedents of the
geometric phase, it is natural to ask whether there are also antecedents in stochastic processes.
Here, we should point out that there is a fundamental difference from quantum mechanics,
which prevents direct analogies. While the state of a quantum system defines the wavefunction
only up to an overall phase, a classical ergodic stochastic system can be described by a
probability vector, without allowing any additional freedom in its definition. For example,
consider a Markov process, i.e. a stochastic process whose future evolution depends only on the
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(a) (b)

Figure 2. Two-state systems: (a) quantum and (b) stochastic.

Figure 3. A three-state Markov chain. This model can be considered as a minimal model to
describe the stochastic behavior of a molecular motor in figure 12.

present state but does not depend on the past. The evolution of the probability vector satisfies
equations which are reminiscent of the quantum-mechanical evolution. Figure 2 shows the
simple example of a two-state quantum system and its stochastic counterpart. In both cases
the evolution is described by linear differential equations with 2 × 2 evolution matrices. In
the quantum-mechanical case, the amplitudes u1 and u2 of two states evolve according to the
Schrödinger equation

i
d

dt

(
u1

u2

)
=

(
ε1(t) �(t)

�∗(t) ε2(t)

)(
u1

u2

)
, (3)

while the continuous two-state Markov process, with probabilities p1 and p2 of the first and
the second states, is defined by the differential system [12]

d

dt

(
p1

p2

)
=

(−k1(t) k−1(t)

k1(t) −k−1(t)

) (
p1

p2

)
, (4)

where parameters k1 and k−1 are called kinetic rates. They describe how often a system jumps
from one state into the other. In spite of the similarity of equations (3) and (4), it is well known
that a quantum-mechanical, cyclically driven two-state system can have a nontrivial geometric
Berry phase, but that is not true for its stochastic counterpart. For given values of parameters,
an ergodic Markov chain has a unique steady state. Under slow evolution of parameters, the
probability vector will simply follow the path of instantaneous steady-state values, returning
to the initial vector after the parameters complete a full cycle.

This example shows that, in an obvious sense, the Markov process does not lead to
adiabatic geometric phases. However, this conclusion is restricted only to the evolution of the
probability vector for a present state. There are other characteristics describing stochastic
processes. For example, one can consider stochastic transitions among three states in
figure 3 and ask what is the probability that the system makes exactly n full cycles in a
clockwise direction by the given time t. In the following sections, we will derive the evolution
equations for similar quantities and show that geometric phases do play an important role in
their evolution.

Anholonomies also play a central role in classical thermodynamics. The Carnot cycle is
an example of a thermodynamic process exhibiting anholonomy [13]. Statistical properties of
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Figure 4. Trajectory of x in response to a periodic infinitesimal path in the space of control
parameters {ui}.

a system in thermodynamic equilibrium can be specified by a set of parameters, such as the
volume, the pressure and the temperature. Slow cyclic changes of these parameters merely
produce cyclic changes of the equilibrium properties, so, as in the example of a two-state
Markov chain, a driven system returns to the initial state in a statistical sense by the end
of a cycle. However, if one looks at the same process from a more general point of view,
namely including effects of this process not only on the given system, but also on systems in
contact with it, a cyclic adiabatic evolution of control parameters usually does not lead to the
same finite state in the full phase space. The laws of thermodynamics predict that the system
converts part of the absorbed energy into production of the work. Moreover, for adiabatically
slow evolution, the work produced depends only on the choice of the contour in the parameter
space, but depends neither on the rate of motion nor on the mechanism of coupling to the
environment. This means that the work can be expressed as a contour integral over the path in
the space of control parameters. For example, for a gas in a reservoir with variable volume V

and temperature T, the work W produced per cycle is

W =
∮

c(T ,V )

p(T , V ) · dV, (5)

where p(T , V ) is the pressure.
The property of dynamic systems to change their state in response to a periodic

perturbation with zero bias has been widely used in control theory [14]. Look e.g. at the
simple input/output model described by differential equations

ẋi = f i
j (x)uj (t), (6)

where fj are smooth functions of x and uj (t) represent control parameters. One can consider
a simple periodic evolution in the control parameter space by setting ui = δi,1 during an
infinitesimal time interval t, where δi,j is 1 when i = j and 0 otherwise. After this, one sets
ui = δi,2 during the following time interval (t, 2t), then takes ui = −δi,1 for (2t, 3t), and
finishes with ui = −δi,2 during (3t, 4t).

An easy perturbative calculation shows that, after one such an infinitesimal evolution in
the space of control parameters with zero bias, the vector x does not generally return to the
initial state but rather acquires an additional correction, as in figure 4, such that

x(4t) = x0 + t2[f1, f2](x0) + O(t3), (7)

where the operation [f1, f2]i = (
f

j

1 ∂f i
2

/
∂xj

) − (
f

j

2 ∂f i
1

/
∂xj

)
is called the Lie brackets of

the vector fields f1 and f2. In general, the value at x0 of the Lie bracket [f1, f2] can even be
linearly independent of f1(x0) and f2(x0). This phenomenon is exploited in Chow’s theorem
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which, together with the theorem of Frobenius, describes the space of configurations that can
be reached using only a prescribed set of vector fields to get around [15].

Although the history of anholonomy effects reaches at least as far back as the 19th century,
a complete survey of its development is beyond the scope of this review and we will not pursue
it further. Instead, we will concentrate on applications of geometric phases to stochastic and
dissipative processes. These topics have attracted attention relatively recently due, in part,
to the success of the Berry phase in quantum mechanics. We attempted to make the review
accessible to an audience not familiar with the mathematical theory of fiber bundles. This
review is also not about the large body of work related to decoherence effects on quantum-
mechanical Berry phases or on geometric phases in chaotic non-dissipative systems. The
reader should consult [2, 16–19] for an introduction to these topics.

The structure of this review is as follows. Section 2 reviews extensions of the Berry phase
idea to non-unitary evolution. Section 3 describes the theory and applications of geometric
phases in dissipative systems with a continuous symmetry of steady-state solutions. One
important application is to control of pattern motion in nonlinear media. Section 4 briefly
reviews the geometric theory of locomotion of micro-organisms. In section 5, we introduce
the stochastic pump effect and its relation to geometric phases in the evolution of the moment
generating functions. In section 6, we generalize the concept of the geometric phase in
stochastic processes to noncyclic evolutions. In section 7, we explain how geometric phases
can influence the kinetics of slow variables in a coarse-grained description of a stochastic
process with a hierarchy of important timescales. This is regarded as a stochastic analogue
of the quantum-mechanical Born–Oppenheimer approximation. We also study stochastic
analogues of Berry phases from this point of view. The reader who is not interested in
complicated mathematical details might prefer to skip section 7 on a first reading. In
section 8, we review the geometric phases in the ‘limit cycle’ evolution. Section 9 is
about constraints that detailed balance conditions impose on geometric effects in systems
near thermodynamic equilibrium. In section 10, we apply some of the techniques we have
discussed to the theory of molecular motor operations. In section 11, we outline several
directions for possible future research.

2. Geometric phases in non-unitary evolution

Non-unitary evolution is often considered in quantum-mechanical problems, where the
coupling to the environment is described phenomenologically by introducing extra parameters
in the equations of motion for a density matrix or a wavefunction. In many physical problems
one can encounter evolution equations, similar to quantum-mechanical ones but with a non-
Hermitian operator replacing the Hamiltonian. Examples can be found in electronic circuits
[20], optics [21] and acoustics [22]. The evolution of any dissipative system near a stable
point or a limit cycle can be linearized and assume a form similar to the quantum-mechanical
Schrödinger equation for a state vector. Motivated by the success of the quantum-mechanical
Berry phase, several studies [23–26] were devoted to geometric phases in systems with non-
Hermitian Hamiltonians. The models considered could generally be written in the form

d

dt
|u〉 = Ĥ (k)|u〉, (8)

where Ĥ is an arbitrary N × N matrix and |u〉 is an N-vector.
Imitating the derivation of the quantum-mechanical Berry phase in the adiabatic limit

leads one to a similar result: if the vector |u〉 at the initial moment of the evolution is one of
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the eigenstates of the matrix Ĥ (k), i.e. if

Ĥ |u(0)〉 = ε|u(0)〉, (9)

then after a slow cyclic evolution of parameters, the vector |u〉 generally returns to the initial
one up to a factor

|u(T )〉 = e− ∮
c A·dk e

∫ T

0 dtε(t)|u(0)〉, (10)

which can be separated into dynamic and geometric parts. Strictly speaking, the values in the
exponents in (10) are not phases because they are no longer purely imaginary. However, it
is generally accepted to use the term, ‘phase’, because of the strong analogy with quantum-
mechanical phases. Berry [25] pointed that it is convenient to express the geometric phase by
introducing also the left eigenstates of the Hamiltonian Ĥ (k), such that

〈u|Ĥ = 〈u|ε. (11)

The eigenvalues for left and right eigenvectors coincide. For a non-Hermitian Hamiltonian,
the eigenvalues are no longer real and the components of the left eigenvector are no longer
complex conjugates of the right eigenvector. In other respects, there is a strong similarity with
quantum-mechanical Berry phases, e.g. the connection A can be written as

A = 〈u|∂ku〉
〈u|u〉 . (12)

Non-unitary evolution does not necessarily describes a dissipation. The geometric phases
with a non-Hermitian Hamiltonian that realizes transformations of the group SU(1, 1) (i.e.
transformations that preserve the form |z1|2 − ∣∣z2

2

∣∣ of a complex-valued 2-vector (z1, z2)),
have attracted considerable attention because of their applications to squeezed states [27–30],
and a number of models in classical mechanics and optics [31–33]. The group SU(1, 1) is a
covering group of the 3D Lorentz group. The corresponding geometric phase is responsible
for a variety of relativistic effects, such as Thomas precession [34, 35]. We refer the interested
reader to the review [36]. More important for our subject is that the group SU(1, 1) is
isomorphic to the group SL(2, R) of 2 × 2 matrices with real entries and the unit determinant.
The SL(2, R) evolution can be used to describe a classical dissipative system. Corresponding
geometric phases were studied both theoretically and experimentally in connection with light
propagation through a set of polarizers [37–39]. Recently, the relation of this geometric phase
to the stochastic pump effect was discussed in [40].

The geometric phase in equation (10) was generalized to non-Abelian and non-adiabatic
evolutions [26, 41] and a number of applications were proposed, e.g. to optically active
refracting media [25]. One interesting property of non-Hermitian Hamiltonians, not found in
quantum mechanics, is the possibility of so-called exceptional points in the spectrum. If a
contour encloses such points, the eigenvalues of the Hamiltonian are not single valued along
this contour. A simple example is the following 2 × 2 matrix, which depends on a complex
parameter z and which has 0 as an exceptional point:(

0 1
z 0

)
, z ∈ C − {0}.

Its eigenvalues λ± = ±√
z are double-valued functions on the space R

2 − {0}. Encircling
such points, the eigenvectors acquire a geometric phase of a new type which has been studied
theoretically in [42–45] and observed in experiments [46, 47].

In spite of this progress, one might think that the geometric phase in dissipative evolution
would be insignificant in comparison with the dynamic part in (10) on the grounds that the
latter becomes either exponentially large or exponentially small with time. However, not all
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modes in dissipative evolution grow or decay exponentially since the matrix Ĥ might also
have zero modes, i.e. one or several linearly independent states with a zero eigenvalue. If
all other modes decay quickly, according to (10), the evolution of such a dissipative system
in the adiabatic limit should instead be governed by the geometric phases. More generally,
geometric phases can also be important when, for fixed values of parameters, a system relaxes
to a limit cycle. In that case, the corresponding eigenvalue is purely imaginary.

3. Control over pattern position and orientation

In early 1990s, Landsberg [48, 49], and independently Ning and Haken [50, 51], suggested
that geometric phases should generally appear in many classical systems which can be
described by a set of nonlinear differential equations with a one-parameter group of symmetry
transformations. In such a system, it is possible to reduce the evolution equations to a form in
which one of the variables does not affect the evolution of the others, that is

dY
dt

= F(Y, λ),
d


dt
= H(Y), (13)

where 
 and the vector Y represent generalized coordinates of the system while F and H
are nonlinear functions of the coordinate vector Y, but not of 
. Assume that the system
is initially at the steady state and that the parameter vector λ changes slowly with time.
Landsberg considered the case when the evolution of the variable Y is dissipative, so that if
parameters λ are time independent, Y relaxes to a steady-state value Y∗(λ). In that case,
for adiabatically slow evolution of λ, Y simply follows a quasi-steady-state trajectory up to a
small non-adiabatic correction

Y(t) ≈ Y∗ + DF−1(Y∗)∂tY∗, (14)

where DF = (∂F/∂Y)Y=Y∗ is the linearization of the vector function F, and DF−1 is the
inverse of the linear function DF. However, one should not assume that 
 can be uniquely
determined by given values of the control parameters. Due to the symmetry 
 → 
 + δθ of
equation (13), where δθ is an arbitrary constant, the steady-state value of 
 is not specified.
Hence 
 does not have to return to its initial value after the parameters λ complete a full
cycle. Landsberg showed in [49] that, after a cyclic evolution, the variable 
 changes by an
amount given by a trivial dynamic part �
dyn = ∫

dtH(Y∗(t)) plus a geometric contribution

�
geom =
∮

c
A · dλ, A = DH(Y∗)DF−1(Y∗)∂λY∗, (15)

where DH = ∂H/∂Y|Y=Y∗ is the linearization of the function H near the point Y∗.
Suppose, that instead of a vector Y with discrete set of entries, we deal with continuous

systems. The vector index then becomes a continuous coordinate and Y is a function of this
coordinate. To generalize (15) to such continuous systems, Landsberg considered equations
of the form

d�(t, x)

dt
= F̂ (x, λ)�(t, x), (16)

where F̂ is now a nonlinear operator, which depends on time only through time-dependent
control parameters λ, and where the evolution equation (16) is assumed to be invariant under
a continuous group G of symmetries, such as the group of translations in the direction of the
coordinate x.

Let |ψ(x)〉 be a stationary pattern profile, i.e. a time-independent solution to (16) for
constant λ. Let DF̂ be the differential operator, which is the linearization of the operator
F̂ near the solution |ψ(x)〉, and let 〈v0| be the zero mode of the differential operator DF̂ +,
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Figure 5. The wire with a hard anisotropy axis along it and a domain wall between two opposing
magnetization directions. Easy axis anisotropy is perpendicular to the x-direction, and makes an
angle ϕ0 with a y-axis. Red vectors show the direction of the local magnetization.

which is the conjugated differential operator to DF̂ , in the sense that
∫

g(Df ) = ∫
(D+g)f .

Landsberg showed that after a cyclic evolution in the parameter space, the stationary pattern
will change by a geometric shift �
geom, given by

�
geom =
∮

c
A · dλ, A = −〈v0|∂λψ〉

〈v0|χ̂ψ〉 , (17)

along the symmetry direction, where χ̂ is the generator of transformations of the symmetry
group G.

Equation (17) can be illustrated by a following simple example [52, 53]. Consider a 1D
ferromagnetic wire with a strong hard axis along it, which favors a magnetization direction
transverse to the wire, as shown in figure 5. Assume that a fixed set of rectangular coordinate
axes has been chosen, with the x-axis along the wire. We also assume the presence of a weak
transverse anisotropy, so that the magnetization energy is described by the energy functional

E ≈
∫

dx{J (∂ϕ/∂x)2 + K sin2(ϕ − ϕ0)}, (18)

where ϕ is the magnetization angle with the y-axis, and the parameter ϕ0 is the angle that the
transverse anisotropy axis makes with the y-axis (figure 5).

In the limit of strong dissipation, the evolution of the variable ϕ(x, t) is given by

α∂tϕ = −δE

δϕ
= 2J∂2

xϕ − K sin[2(ϕ − ϕ0)], (19)

where α is a damping constant. Note that equation (19) is invariant under the translation
x → x − δx, which justifies the use of the geometric theory of [48]. The generator of this
symmetry is χ̂ = −∂x .

At equilibrium, the ground state of (18) is doubly degenerate at ϕ = ϕ0 and ϕ = ϕ0 + π .
Consider the stationary solution of (19) describing a domain wall connecting these two states

ϕdw(x;ϕ0, x0) = ϕ0 + 2 tan−1 e(x−x0)/�, � =
√

J/K0, (20)

where x0 and � can be called respectively the position and the size of the domain wall.
Assume that the parameter ϕ0 is slowly time dependent and varies from 0 to 2π as the
transverse anisotropy axis performs one rotation around the x-direction. One can realize this
situation, for example, by physically rotating a wire. In our model, ϕ0 is the control parameter,
and equation (17) gives

δx0 =
∮ ∫ ∞

−∞ dx[v0(x)∂ϕ0ϕ
dw(x)]∫ ∞

−∞ dx[v0(x)∂xϕdw(x)]
dϕ0, (21)

where v0(x), given by

v0(x) = �

cosh((x − x0)/�)
, (22)
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is the zero mode of the self-adjoint operator

DF̂ = DF̂ + = 2J∂2
x − 2K cos[2(ϕdw(x;ϕ0, x0) − ϕ0)]. (23)

Substituting this value of v0(x) into (21) we find

δx0 =
∫ 2π

0
Aϕ0 dϕ0, Aϕ0 = π�/2, (24)

which was derived in [53] using the secular perturbation theory.
A number of theoretical and experimental studies of the motion of domain walls in liquid

crystals under the influence of periodic perturbations have been performed [52, 54–57], but the
role of the geometric phase has not been discussed. Landsberg’s theory was aimed at control
of wave patterns in nonlinear media. Such control was discussed in more detail for specific
applications to nonlinear chemical reactions [58], nonlinear optics [59], hydrodynamics [60]
and semiconductor microresonators [61]. Optical applications proposed by Ning and Haken
were extended by Toronov and Derbov [62, 63].

Studies of special problems with a mathematical structure similar to the Landsberg–Ning–
Haken formalism can be found even prior to [48, 49]. For example, the use of a rotating electric
field was suggested as a means of separating chiral molecules in solution [64, 65]. Recently
this idea was extended to the gaseous state, but the proposed effect is expected to be observed
in the non-adiabatic regime [66]. Geometric phases can also contribute to the anomalous shift
of the trajectory of a magnetic bubble in a rotating nonuniform magnetic field, which is called
the skew-deflection effect [67].

Control over the motion of domain walls and other topological defects has been extensively
studied in magnetic materials [67–70]. The example of the domain wall shown above
demonstrates that the projection of dynamics on the collective degrees of freedom should
be performed with extra care to account for possible geometric phase effects. For example, in
the micromagnetics literature, one often finds that the equations of motion for the collective
coordinates ξ read [69]

−∂U/∂ξ − �ξ̇ + Gξ̇ = 0, (25)

where −∂U/∂ξ is the generalized force, � is the symmetric dissipation matrix and G is the
antisymmetric gyrotropic matrix. However, equation (25) can lead to problems. In the case of
a domain wall (20), one can attempt to work with a single collective coordinate representing
the position of the domain wall, and to regard the angle ϕ and the size of the domain wall
� as fast variables. This choice might seem natural in view of the fact that translation is the
only continuous symmetry in the model and should dominate the physics at low energies and
under slow perturbations. However, in the model under consideration, the wall was moving
because some parameters became time dependent. In the static case, there are no forces on
the chosen collective degrees of freedom. Thus equation (25) can acquire extra geometric
terms in explicitly time-dependent situations, and is therefore not, in itself, sufficiently general
even when only slow changes of parameters are considered. As another word of caution, we
note that the translational symmetries in real applications are only approximate for standard
magnetic materials because of the presence of impurities and discreteness of the lattice. As
discussed in [53], this is a serious obstacle to purely geometric control over magnetic defects
in practical applications.

4. Self-propulsion at low Reynolds numbers

One of the first applications of geometric phases in dissipative systems was proposed by
Shapere and Wilczek [71, 72] in their description of locomotion of microscopic organisms in a
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viscous fluid. This theory was based on the well-known observation that the motion of living
organisms at low Reynolds numbers is, in fact, geometrical. Microscopic living organisms
propel themselves in a liquid by performing periodic changes of their shapes. These changes
correspond to noncyclic motion in a larger space, whose points describe the shape of the body,
its position and its overall orientation. One can choose a gauge in this phase space, i.e. a
rule to determine the position and the orientation of the body of any given shape with respect
to a fixed coordinate system in the three-dimensional space. Using such a gauge one can
characterize the state of the body by a set of coordinates (x, α), where α is a vector of shape
parameters and x = (r, φ) consists of the position r and orientation φ of the body.

Body shapes are assumed to be directly controllable by the organism subject to certain
constraints such as conservation of volume, which allow only finite and quasi-periodic changes
of α. The body interacts with a high viscosity liquid which is described by the incompressible
Navier–Stokes equation. This equation should be solved with no-slip boundary conditions at
the surface of the organism to guarantee the absence of force and a torque on it. For slow
changes of shape, these no-slip conditions are expressible in terms of the first partial derivatives
of x with respect to time. In particular, they are automatically satisfied by non-moving bodies.
After eliminating the degrees of freedom of the liquid by solving the Navier–Stokes equation,
the equation that connects changes of x and α follows from the boundary conditions and has
the form

dx = A(α) · dα, (26)

where the connection A is defined on the space of body shapes. Integration over a closed path
c in the space of body shapes leads to the purely geometric result that δx = ∮

c A(α) · dα.
The geometric theory of locomotion at low Reynolds numbers has found too many

applications to summarize here. Fortunately, fairly good introductions and reviews are already
available [73–75]. Here we only mention that the theory was applied to determine optimal
protocols for cell body changes [76–80]. It was found that such optimal moves are similar to
those observed in some organisms [76, 79]. Discussions of simple illustrative models can be
found in [77, 81]. An application of the theory for the propulsion of microscopic objects by
manmade motors at low Reynolds numbers can be found in [82].

5. Stochastic pump

A stochastic pump is a stochastic system that responds with nonzero on average currents to
periodic perturbations [83–87]. We will call such currents the pump currents. A stochastic
pump resembles a quantum pump [88–93]. In the latter, nonzero currents appear under
similar circumstances but originate from purely quantum-mechanical effects. The stochastic
pump effect (SPE) was observed in frequency-locked electronic turnstile devices [94, 95] and
in enzymatic reactions [96]. Recently, it was studied experimentally in transport through
a conical nanopore, where strong pump current variations were found as a function of the
relative phase of applied voltage signals [97].

One of the simplest models of the SPE is illustrated in figure 6. In this model, the central
bin system B can have at most one particle inside. The bin is connected to the absorbing state
S from the left and the absorbing state R from the right. The term absorbing state means here
that any number of particles can enter this state or leave it. Kinetic rates in the model are
shown in figure 6. If the bin is empty, then, with rates k1 or k−2, a particle jumps into the bin
either from the left or from the right, respectively. If the bin contains a particle, transitions
into the bin are forbidden until this particle escapes to the left or to the right, which it does,
respectively, with rates k−1 and k2. We assume that the kinetic rates are time dependent, i.e.
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Figure 6. A simple system demonstrating the stochastic pump effect.

they are control parameters, and we are interested in currents of particles from one absorbing
state into the other one. The SPE in this model has been studied in great detail [98–102]. Even
so, due to the simplicity of the kinetic scheme in figure 6, the average current can be studied
analytically along with its fluctuations [100].

The model in figure 6 can be used to describe charge transport through a quantum dot in
the Coulomb blockade regime [103], where absorbing states represent conducting leads, and
the bin represents the quantum dot with at most one electron inside. It also serves as a model
of molecular fluxes through an ion channel connecting two compartments in a living cell
[96, 152].

In what follows, we will consider the realization of the model in figure 6 in the enzymatic
mechanism of Michaelis–Menten type [104], which is defined as the following chemical
reaction:

E + S
k1−→←−

k−1

ES
k2−→←−

k−2

E + P, (27)

where S and P are called substrate and product, and E is an enzyme molecule. Here, we assume
a situation with a formally infinite number (a sea) of substrate and product molecules but with
only a single enzyme molecule. Either S or P can combine with the enzyme E to produce an
unstable complex which we will refer to as the bound state of enzyme. This complex can then
dissociate into either E and S or into E and P. These dissociated states will be referred to as
the free states. Here it is important to note that, even if ES is formed from E and P (resp. E
and S), it can freely dissociate into either E and P or into E and S. In terms of the model of
figure 6, the free states are those in which the bin is empty, while the bound state is that in
which the bin is filled. The sea of substrate molecules is represented by the S-state and the
sea of product molecules is represented by the P-state in figure 6.

We define the moment generating function for the number of transitions, n, in time T from
ES (the bin with a particle) into E + P (the absorbing state P) by

Z(χ, T ) ≡ eS(χ,T ) =
+∞∑

n=−∞
Pn(T ) einχ , (28)

where Pn is the probability of the event that, by time T, there will be n new product molecules
created, counting the opposite process with a minus sign. S(χ, T ) is the cumulant generating
function of the number of transitions, because it determines all cumulants of the particle flux.
For example, the mean 〈n(T )〉 and the variance var(n(T )) are given, respectively, by

〈n(T )〉 = (−i)
∂S(χ, T )

∂χ

∣∣∣∣
χ=0

, var(n(T )) = (−i)2 ∂2S(χ, T )

∂χ2

∣∣∣∣
χ=0

. (29)

In order to derive the evolution equation for the generating function (28), it is convenient
to introduce the generating functions UE = ∑∞

n=−∞ PnE einχ and USE = ∑∞
n=−∞ PnSE einχ ,

where PnE and PnSE are the following probabilities: PnE is the probability that, at a given
time, the system is in a free state and the number of product molecules created is n, and PnSE

is the probability that enzyme is in a bound state and the number of product molecules created

11
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is also n [166]. The master equations for PnE and PnSE are then
d

dt
PnE = −(k1 + k−2)PnE + k−1PnSE + k2P(n−1)SE,

d

dt
PnSE = −(k−1 + k2)PnSE + k1PnE + k−2P(n+1)E.

(30)

Multiplying (30) by eiχn and summing over n we find

d

dt

(
UE

USE

)
= Ĥ (χ, t)

(
UE

USE

)
, (31)

where

Ĥ (χ, t) =
( −k1 − k−2 k−1 + k2 eiχ

k1 + k−2 e−iχ −k−1 − k2

)
. (32)

If we set n = 0 at an initial moment t = 0, then the initial conditions for (31) are
UE(t = 0) = pE(0), and USE(t = 0) = pSE(0), where pE(0) and pSE(0) are probabilities
that the enzyme is respectively free or in the substrate–enzyme complex. Also, note that
Z(χ, t) = UE(χ, t) + USE(χ, t). Thus, formally, the moment generating function in (28) can
be expressed as the following average of the evolution operator:

Z(χ, t) = 〈1|T̂ (
e
∫ t

0 Ĥ (χ,t) dt
)|p(0)〉, (33)

where 〈1| = (1, 1), where |p(0)〉 = (pE(0), pSE(0)) is the vector of initial probabilities of
enzyme states and where T̂ is the time-ordering operator.

A derivation of the adiabatic approximation for (33) can be found in [100] but the general
discussion of section 2 shows that the generating function for a slow cyclic evolution of
parameters is an exponential of the sum of two terms: one geometric and one dynamic,

Z(χ) = eSgeom(χ)+Sdyn(χ). (34)

Let ε0(χ) be the instantaneous eigenvalue of Ĥ (χ, t) with the larger real part, let κ± = k±1k±2,
let e±χ = e±iχ − 1 and let K = ∑

m km where m = −2,−1, 1, 2. Then the dynamic part is
given by

Sdyn(χ) =
∫ T

0
dt ε0(χ, t) = −1

2

∫ T

0
dt

[
K −

√
K2 + 4(κ+eχ + κ−e−χ )

]
, (35)

The problem of degeneracy of eigenvalues cannot appear here because the eigenvalue ε0(χ, t)

corresponds to the unique steady state of the system. Here, we note that the vector of kinetic
rates k depends on t and describes a contour c in the parameter space. Next, denoting by
|u0(χ, k)〉 the eigenvector corresponding to ε0(χ, k), the geometric part Sgeom(χ) is given by
equation

Sgeom(χ) = −
∮

c
A · dk, Am = 〈u0(χ, k)|∂km

|u0(χ, k)〉. (36)

There is an obvious analogy between the geometric part of the cumulant generating function
(36) and the Berry phase in quantum mechanics (2). The geometric phase Sgeom(χ) in (34)
was discovered by Sinitsyn and Nemenman in [100].

If parameters k1 and k−2 are time dependent, while k2 and k−1 are constants, then∮
c

A · dk =
∫ ∫

sc

dk1 dk−2Fk1,k−2 , (37)

where sc is a surface whose boundary is the contour c, and

Fk1,k−2 =
〈
∂u0

∂k1

∣∣∣∣ ∂u0

∂k−2

〉
−

〈
∂u0

∂k−2

∣∣∣∣∂u0

∂k1

〉
. (38)

Fk1,k−2 is the analogue of the quantum-mechanical Berry curvature.
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Figure 7. Illustration of the shielding mechanism of the SPE.

The following explicit expression for Fk1,k−2 is then obtained [100] by computing the
eigenvectors of the Hamiltonian (32):

Fk1,k−2 = e−χ (eiχk2 + k−1)

[4κ+eχ + 4κ−e−χ + K2]3/2
. (39)

The generating function (34) contains information both about average flux and about flux
fluctuations. To extract the average current from expressions (36) and (35) one should write
the cumulant generating function as a power series in the small parameter χ and retain the
linear part, namely

Sdyn ≈ iS(1)
dynχ + O(χ2), Sgeom = iχ

∫ ∫
sc

dk1 dk−2F
(1)
k1,k−2

+ O(χ2). (40)

Higher order terms in χ can reveal information about the higher cumulants of stochastic fluxes,
while the first-order terms coincide, up to iχ , with the average number of transferred particles.
For the process in figure 6, such calculations lead to the following expression [100] for the
mean S → P flux per cycle:

J = Jgeom + Jdyn, (41)

Jgeom =
∫ ∫

sc

d2k
k2 + k−1

K3
, (42)

Jdyn =
∫ T

0
dt

κ+(t) − κ−(t)

K(t)
. (43)

It turns out that the dynamic contribution Jdyn to the current is just the steady-state current
averaged over time. Equations (42) and (43) show that the geometric contribution Jgeom to
the current has strikingly different properties from the dynamic one. In fact, it does not have
an analogue in a strict steady-state situation because it is nonzero only if the contour encloses
a finite area in the parameter space, i.e. in order to make it nonzero, at least two parameters
should be time dependent with a phase shift different from 0 or π . Another interesting
property is that this contribution changes sign when the direction of motion along the contour
is reversed.

An intuitive explanation of the phenomenon of Jgeom �= 0 is illustrated in figure 7. During
an interval of time in which a molecule is bound to the enzyme, the bin of figure 6 is occupied
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and the values of k1 and k−2 have no effect on the system. If the left binding rate k1 is higher
than the right one k−2 during the upswing of the cycle, then k1 ‘shields’ growing values of
k−2 from having an effect, while k−2 shields decreasing values of k1 during the downswing.
This leads to a phase-dependent asymmetry which is the source of the geometric pump
flux.

It is instructive to compare the relation of the geometric phase (36) to the value given
by equation (13) in the formalism of Landsberg–Ning–Haken, which was discussed in
section 3. The pump current (41) itself can alternatively be derived directly from the master
equation for the vector p = (pES, pE) of probabilities of the enzyme (bin) states. These
equations have the form

ṗ = Ĥ (χ = 0, k)p, ṄP = J (p, k), (44)

where NP is the average number of product molecules created, and where the current J (p, k)

is defined by

J (p, k) = pSEk2 − pEk−2. (45)

This set of equations has the form (13), namely, probabilities relax to unique steady-
state values at given rate constants k, independently of the additional equation for NP. The
geometric phase (36), however, contains complete information about the stochastic evolution,
including geometric contributions to higher cumulants, which cannot be derived from a set
of equations in (44). The additional information provided by (35) and (36), but not by (44),
is sometimes necessary. For example, it is needed for a complete description of counting
statistics of currents in nanoscale electronic circuits, which were measured experimentally in
[105]. The higher cumulants are also needed to account for contributions to particle fluxes
due to stochastic transitions over potential barriers, as studied in [106, 107]. Thus the full
stochastic treatment of such processes, beyond the formalism of equations (44), is inevitable,
and the geometric contribution to higher cumulants has important consequences in the theory
of such effects.

6. Non-cyclic geometric phase

The quantum-mechanical Berry phase can be extended to noncyclic evolution [108, 109].
Sinitsyn and Nemenman [110] showed that a moment generating function of the form (33)
can be partitioned into geometric and dynamic parts even if the parameters change along an
open circuit. For evolution during time δt we have

Z(χ, δt) = eSgeom(χ,δt)+Sdyn(χ,δt), (46)

where Sdyn = ∫ δt

0 dt ε0(χ, t) is the quasi-stationary part of the generating function and where

Sgeom =
∫

c
[P(k) − A(k)] · dk, (47)

with

P = ∂k ln〈1|u0〉, A(k) = 〈u0|∂ku0〉, (48)

where 〈1| = (1, 1) is the vector with all unit entries. The noncyclic geometric phase
contribution has no analogue in a strict steady-state regime. In general, for a non-cyclic
evolution, the term − ∫

c A(k) · dk is not gauge invariant, and the term
∫

c P(k) · dk is a necessary
correction to make it so. The integral over the additional vector P exactly cancels the non-
gauge-invariant part of the contour integral of A. The vector P introduces the gauge, which

14



J. Phys. A: Math. Theor. 42 (2009) 193001 Topical Review

can be derived from proper accounting for the effect of the averaging over the final states of
the bin system at the end of the evolution.

Since P is an exact differential, it is important only when looking at an evolution along
an open path in the parameter space. If the parameter vector k returns to its initial value at
the end of the evolution, expression (36) becomes equivalent to the cyclic geometric phase
defined in [100]. The origin of the gauge invariance of expression (47) can be traced from the
Markovian property of the process. The gauge transformation

Z(χ) → Z(χ) eSprior(χ) (49)

has the physical meaning of the assumption that additional currents, described by the cumulant
generating function Sprior(χ), have passed through the system before the time moment t = 0.
In Markovian evolution, the currents counted after t = 0 should be independent of the currents
counted prior to this moment, which means that expression (47), describing the currents after
t = 0, is invariant of the gauge transformation (49).

7. Elimination of fast variables in stochastic processes

This section is technically more involved than the rest of the review, and can be safely
omitted on a first reading. It contains a discussion of the method of stochastic path integral.
This is a powerful technique for investigating stochastic fluxes in mesoscopic interacting
systems. The discussion in section 5 reduces the problem of computing the counting
statistics to that of finding eigenvalues and eigenvectors of a non-Hermitian Hamiltonian. This
straightforward approach becomes extremely complicated when applied to complex systems
with a mesoscopically large phase space. In contrast, the stochastic path integral technique
allows us to derive moment generating functions of fluxes even in many-body interacting
mesoscopic stochastic systems. We advise the reader, who is not familiar with stochastic path
integrals, to study look at the articles [111–113] before reading this section. Sinitsyn and
Nemenman [101] demonstrated that this technique can be applied to study geometric phases
in the evolution of driven mesoscopic stochastic systems. In this section we discuss another
application of geometric phases and the stochastic path integral, namely, to the problem of
coarse graining stochastic kinetics.

Berry phases often appear in quantum-mechanical applications when one attempts to
eliminate fast degrees of freedom and reduce a problem to an effective one which includes
only slow variables. Such an approach is known as the Born–Oppenheimer approximation
and has been very successful for describing near-equilibrium properties of most molecules.
According to it, initially one solves a much simpler Schrödinger equation for electrons,
treating nuclear degrees of freedom as adiabatically slowly changing parameters. After this,
one assumes that the nuclei move on a single potential-energy surface created by the faster
moving electrons. An interesting development involving this approach was the observation
that the Berry phase, acquired by electronic wavefunction in a potential of slowly moving
nuclei, influences the dynamics of slow degrees of freedom [2, 19, 114].

The evolution equations for moment generating functions in stochastic processes are
similar to the quantum-mechanical Schrödinger equation [111]. We already encountered
this analogy in section 5. This mathematical similarity was also used, for example, to
study counting statistics in electronic transport [112, 113, 115], to estimate over-barrier
escape probabilities [106, 107] and to classify stochastic phase transitions [116]. Many
of the applications of this approach were restricted to relatively simple systems with only
a few interacting species because quantum-mechanical equations are usually no simpler to
investigate than the stochastic ones.
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Recently, a stochastic-quantum analogy was proposed to simulate the behavior of large
stochastic networks of biochemical reactions. In general, these networks involve many
different chemical species and reaction types. [117]. One of the difficulties in studying
such networks is their stiffness, i.e. strong timescale separation of various processes in a
network. In its application to stochastic processes, the Born–Oppenheimer approximation
rigorously captures statistical characteristics of chemical processes at coarse-grained
scales [117].

In this section, we present a simple example of how a reduction of a model can be achieved
and how geometric phases influence the evolution of slow variables. For this purpose we again
consider the Michaelis–Menten type of conversion of S into P via creation of a substrate–
enzyme complex, which we studied in section 5. Now, however, we assume that numbers of
substrate and product molecules (NS and NP respectively) are independent dynamic variables,
subject to all the conservation laws imposed by the given kinetic scheme. We also assume that
the enzyme–substrate complex is created from substrate and product molecules at kinetic rates
which are respectively proportional to the absolute numbers NS and NP of these molecules.
We then have to consider the following four reactions:

(i) forward substrate–enzyme complex formation, S + E → SE, with rate k1NS;

(ii) backward substrate–enzyme complex formation, P + E → SE, with rate k−2NP;

(iii) complex backward decay, SE → S + E, with rate k−1;

(iv) product emission SE → E + P , with rate k2.

Since we have only one enzyme molecule but NS, NP  1, it takes many identical steps for
the enzyme molecule to convert a substantial number of substrates into products. This creates
a timescale separation, which can be used to reduce the model to an effective process

S → P. (50)

Our goal is to find the statistical characteristics of the coarse-grained reaction (50). Let TS→P

be the time it takes an enzyme molecule to convert a substrate molecule to a product molecule.
We choose a timescale δt which is much larger than TS→P , but much smaller than NSTS→P .
Suppose that we are looking for the moment generating function of the number nP of product
molecules created during a relatively long time T  δt :

Z(χC) = eS(χC) =
∞∑

nP=−∞
P(nP|T ) einPχC . (51)

Here we introduce an additional index C to mark a counting parameter in (51) in order to
distinguish it from other variables which will appear in the following calculations. As noted
in [111, 112], if one knows the statistical properties of fluxes at timescales δt then the moment
generating function at larger timescales can be written in the form of a stochastic path integral.
We will derive the stochastic path integral representation of the generating function in (51).

In sections 5 and 6 we already found the full counting statistics of the fluxes in the
Michaelis–Menten model with slowly time-dependent parameters. To apply it to our model
we should redefine kinetic rates as k1 → k1NS(t) and k−2 → k−2NP(t). This does not
solve our problem completely, because at this stage we do not know the explicit time
dependence of NS(t) and NP(t), which we regard as slow but dynamic variables. Let us
partition the time line into intervals (tm, tm + δt) of durations δt , where tm = mδt , and let
δnP(tm) be the relative change in the number of product molecules during these time intervals.
We chose δt sufficiently small, so that 〈δnP(tm)〉/NP/S(tm) � 1 while the absolute change is
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large 〈δnP(tm)〉  1. The probability distributions of δnP(tm) are then given by the inverse
Fourier transforms of the corresponding moment generating functions in section 6:

P(δnP(tm)) =
∫ π

−π

dχ(tm)

2π
exp(−iχ(tm)δnP(tm) + SMM(χ(tm), δt)). (52)

Here, SMM = Sgeom + Sdyn is the cumulant generating function of the number of new product
molecules which were generated during time δt . Treating NS/P(t) as slow time-dependent
parameters, one finds that SMM is given by equation (46).

The moment generating function of the number of product molecules created during a large
time interval (0, T ) is given by the sum over all possible paths in the space of dynamic variables
NS(tm),NP(tm) and δnP(tm), weighted by the probabilities (52) and by delta-functions, which
are responsible for conservation of the number of molecules,

δm
NS

= δ(NS(tm+1) − NS(tm) + δnP(tm)), (53)

δm
NP

= δ(NP(tm+1) − NP(tm) − δnP(tm)). (54)

We use delta-functions instead of Kronecker symbols because the assumption NS/P, δnP(tm) 
1 allows us to treat NS/P and δnP as continuous variables. Using that nP = ∑T/δt

m=1 δnP(tm), the
moment generating function of this number is a discrete path integral

Z(χC) ≡ 〈eiχCnP〉
=

∏
m

∫
dNS(tm) dNP(tm) d(δnP(tm))P [δnP(tm)] eiχCδnP(tm)δm

NS
δm
NP

. (55)

We rewrite the delta-functions in (52) as integrals over oscillating exponents

δm
NS/P

= 1

2π

∫ +π

−π

dχS/P(tm) exp(iχS/P(tm)[NS/P(tm+1) − NS/P(tm) ± δnP(tm)]),

and substitute the result into (55). After this, integrals over δnP(tm) produce new delta-
functions, which are easily removed by integration over χ(tm), leaving us only with a path
integral over the slow variables NS/P(tm) and χS/P(tm). Taking a continuous limit, we have
NS/P(tm+1) − NS/P(tm) → ṄS/P(t) dt , and we can rewrite the moment generating function as
a path integral involving only slow variables:

〈eiχCnP〉 =
∫

DNS(t)

∫
DNP(t)

∫
DχS(t)

∫
DχP(t) eS(χC,T ), (56)

where S(χC, T ) can be partitioned into dynamic and geometric parts

S(χC, T ) = Sdyn(χC, T ) + Sgeom(χC, T ), (57)

such that

Sgeom = −
∫

c
[ANSdNS + ANPdNP + AχSdχS + AχPdχP], (58)

Ax = 〈u0(χS − χP + χC)|∂x |u0(χS − χP + χC)〉, (59)

Sdyn =
∫ T

0
dt[iχSṄS + iχPṄP + HMM(NS, Np, χS − χP + χC)], (60)

where c is the contour of the trajectory in the slow parameter space, x belongs to the set
{NS, NP, χS, χP} and HMM plays the role of the effective Hamiltonian

HMM = K −
√

K2 + 4[NSk1k2(ei(χS−χP+χC) − 1) + NPk−1k−2(e−i(χS−χP+χC) − 1)]

2
,
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where K ≡ k1NS + k−2NP + k−1 + k2. This Hamiltonian is different from what one would
expect if the conversion of S into P were a Poisson process, which reflects the non-Poisson
nature of enzyme mediated fluxes. The geometric part of the action (58) is the result of the
pump fluxes.

The path integral (56) is a formal solution of the problem of removing of fast degrees
of freedom: it expresses the moment generating function in terms of only slow variables
NS, NP, χS, χP and does not depend on the degrees of freedom of the enzyme.

Since the averages 〈NS〉 and 〈NP〉 are assumed large, one can use the saddle point solution
of the path integral to derive semiclassical equations of motion for slow variables. Varying
the action results in four coupled differential equations

iṄS = −∂HMM

∂χS
− iFχS,NSṄS − iFχSNPṄP, (61)

iṄP = −∂HMM

∂χP
+ iFχS,NSṄS + iFχSNPṄP, (62)

iχ̇S = ∂HMM

∂NS
− iFχS,NS χ̇S − iFχSNP χ̇P + iFNS,NPṄP, (63)

iχ̇P = ∂HMM

∂NP
+ iFχS,NS χ̇S + iFχSNP χ̇P − iFNS,NPṄS, (64)

where Fx1,x2 = i(∂Ax2/∂x1 − ∂Ax1/∂x2) and we used that Axm
depends on χS, χP via the

combination (χS − χP) which leads to the relations Fχn,χm
= 0, FχS,NS = −FχP,NS and

FχS,NP = −FχP,NP . The boundary conditions can be also influenced by geometric phases and
should be derived by the method used in [111, 112].

For χC = 0 there is a solution to equations (64) such that χS = χP = 0. NS, NP then
satisfy coupled equations, which are known to coincide with the mean field equations [112]

iṄS = −i�χS,NSṄS − i�χSNPṄP − ∂HMM

∂χS

∣∣∣∣
χS=χP=χC=0

, (65)

iṄP = i�χS,NSṄS + i�χSNPṄP − ∂HMM

∂χP

∣∣∣∣
χS=χP=χC=0

, (66)

where �x1,x2 = Fx1,x2 |χS=χP=χC=0. Explicitly, for our model one can find that

�χS,NS = −k1(k2 + k−1)
(k2 + k−2NP)

K3
, (67)

�χS,NP = −k−2(k2 + k−1)
(k2 + k−2NP)

K3
. (68)

If substrate and product have no other dynamics than the conversion into each other via the
ES complex, then ṄP = −ṄS and

∂HMM

∂χS

∣∣∣∣
χS=χP=χC=0

= −∂HMM

∂χP

∣∣∣∣
χS=χP=χC=0

= i(k1k2NS − k−1k−2NP)/K,

so, the evolution equation (66) for NP becomes

ṄP = (k1k2NS − k−1k−2NP)

K
− (k2 + k−1)(k1ṄS + k−2ṄP)(k2 + k−2NP)

K3
. (69)
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The first term in (69) is the usual quasi-steady-state prediction for the substrate-product
conversion rate, and the second term is a correction due to the geometric phase contribution to
the effective action. We note again that equations (64) contain information both about average
fluxes and their fluctuations, while the result (69) is equivalent to the mean-field prediction
for the average number of NP. Substituting the solution of (64) into (57), one obtains the full
counting statistics of the number nP of product molecules created.

Terms resembling the geometric phase corrections in (64) also appear naturally in
variational approaches to chemical kinetics [118]. Equations of motion, such as (64) are
known in condensed matter physics, where similar Berry phase terms lead to distinct effects,
such as the anomalous and the spin Hall effects [7–9]. Generally, the geometric phase
correction in (69) is smaller than the quasi-steady-state part. However, there are situations
when it can be important due to its specific symmetries [110].

8. Driven limit cycle

An interesting geometric phase was found by Kagan et al [119] in dissipative systems evolving
to a limit cycle. In addition to a geometric phase that appears after the elimination of quickly
decaying modes, they found also a geometric phase which arises from the nontrivial topology
of the limit cycle itself. Consider the following evolution equation:

dφ

dt
= �(φ,μ), (70)

where �(φ) = �(φ + 2π) is the instantaneous frequency and μ is a vector of internal
parameters, which is slowly and periodically time dependent. Since the evolution is periodic,
we can regard φ as a phase. Introducing the new variable

θ(φ, μ) =
∫ φ

0

ω(μ)

�(φ′, μ)
dφ′, (71)

which is a rescaled version of φ, defined so that θ evolves at the constant rate

ω(μ) =
(

1

2π

∫ 2π

0

1

�(φ′, μ)
dφ′

)−1

(72)

when μ is fixed, Kagan et al showed that for adiabatic cyclic evolution of μ the phase (71)
becomes the sum of dynamic and geometric parts,

θ(T ) = θdyn(T ) + θgeom(T ), (73)

where T is the period of the adiabatic evolution of parameters,

θdyn(T ) =
∫ T

0
dt ω(μ(t)) (74)

and

θgeom(T ) =
∮

A · dμ, (75)

where

A =
∫ 2π

0

dφ

2π

[
ω(μ)

�(φ,μ)
∂μθ(φ, μ))

]
. (76)

One can look at the geometric phase (75) from the point of view of the stochastic path
integral representation, which was discussed in section 7. As in the derivation of the stochastic
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path integral, one can promote the evolution (70) to a Hamiltonian flow by introducing a
variable �, which is canonically conjugate to φ, with the Hamiltonian

H(�, φ) = ��(φ,μ). (77)

The phase evolution (70) then follows from the canonical equation

dφ

dt
= ∂H

∂�
. (78)

Sinitsyn and Ohkubo [120] showed that, in this Hamiltonian evolution, θgeom becomes a
Hannay angle [33], which is a geometric phase in classical mechanics that is responsible for
the rotation of the Foucault pendulum, and many other subtle effects.

9. Thermodynamic constraints and geometric phases

Geometric approach to classical thermodynamics began with Josiah Willard Gibbs’ pioneering
work, called ‘Graphical Methods in the Thermodynamics of Fluids’ [121]. With the
development of this point of view, it has become possible to formulate classical equilibrium
and near-equilibrium thermodynamics in terms of the theory of metric spaces and the vector
geometry [122].

Many applications of geometric phases in stochastic kinetics involve perturbation of
systems initially in thermodynamic equilibrium. These include the response of molecular
motors or mesoscopic electronic circuits to periodic evolution of parameters. The laws of
thermodynamics impose constraints on the kinetic rates which guarantee that the Boltzmann
distribution at a given temperature describes the equilibrium state. These constrains also have
important consequences for geometric phases.

Were it not for geometric phases, a thermodynamic system with adiabatically changing
parameters would have no average current. When detailed balance conditions are imposed on
kinetic rates at any moment of time, a strict quasi-steady-state approximation predicts exactly
zero fluxes on average in response to adiabatically slow perturbations. Hence, the geometric
phase is the only mechanism that can be responsible for nonzero currents in such systems. In
this section, we discuss several examples in support of this conclusion.

9.1. Reversible ratchet

Ratchets are systems, where particles diffuse in a potential, which is periodic both in space
and time, i.e. V (x, t) = V (x + L, t) = V (x, t + T ). The particle distribution ρ(x, t) satisfies
the Fokker–Planck equation, which predicts that for a fixed potential profile, ρ(x, t) relaxes
to the Boltzmann distribution ρ(x) = Ce−V (x)/kBT , where C is a normalization constant. An
example of a ratchet is shown in figure 8. The ratchet working in the regime of adiabatically
slow evolution of the potential profile is called the reversible ratchet because currents in this
limit change sign when the potential profile changes with time in a reversed order. Thus, the
reversible ratchet is a simple example of a device working near thermodynamic equilibrium.

Currents in a discrete version of a reversible ratchet were studied by Markin and Astumian
[123]. The continuous model [124] was studied by Parrondo, who derived the explicit
expression for the current of particles in such a system in the limit of adiabatically slow changes
of the potential. The paradox is that, for adiabatically slow changes, one can expect that the
particle distribution would have enough time to converge to an instantaneous equilibrium
distribution, i.e. it is expected to have a form ρ(x, t) ≈ C(t) e−V (x,t)/kBT . Such a varying
Boltzmann distribution does not predict any current on average in the system at any moment
of time, while apparently the solution of the problem predicts a nonzero current. Sinitsyn and
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Figure 8. Snapshots of a ratchet potential at three stages of its evolution.

Nemenman [101] explored this model from the point of view of the stochastic path integral
representation of the moment generating function of particle currents Z(χ, T ). They showed
that

Z(χ, T ) = eiχ
∮

c A(k)·dk+O(χ2), (79)

where k is the vector of parameters controlling the shape of V (x) and c is the contour in
this parameter space. According to (79), the geometric phase is not zero, and contributes to
the linear term in χ of the moment generating function. This confirms that the current in
an adiabatic reversible ratchet is nonzero and arises purely geometrically. It can be totally
controlled by choosing a proper contour in the space of potential shapes.

An interesting observation about this effect was made by Shi and Niu [125], who showed
that this current can be quantized and that this quantization can be related to a Chern number
of a Bloch band related to the periodic potential.

9.2. Geometric phases and fluctuation-dissipation relations

The adiabatic SPE appears when two time-dependent periodic perturbations are applied.
From the discussion in section 5, it follows that the average flux of the ‘charge’, pumped by an
application of infinitesimal cyclic external fields hB(t) and hC(t), is proportional to the area
inside the contour of parameter evolution. We also showed that the pump current reverses
its sign when a system is moving along the same contour but in the opposite direction. This
situation can be expressed as the following law,

δq = FBC dhB ∧ dhC, (80)

where δq is the average of the flux that passes through the system during one cycle of the
adiabatic periodic evolution, dhB ∧ dhC is the infinitesimal directed area enclosed by the
contour in the space of control parameters, and FBC is the proportionality coefficient which,
up to an iχ -factor, coincides with the part of the Berry curvature linear in χ .

According to the fluctuation–dissipation theorem [126], some transport coefficients near
the point of thermodynamic equilibrium can be expressed in terms of correlation functions
at the equilibrium point. Relations of this kind tell us a lot about the coefficient FBC

[90, 127]. The quantum version of the adiabatic pump effect can be quantified using the
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Kubo formula [90]. One can derive the analogous result for a classical stochastic pump,
operating near thermodynamic equilibrium, using a classical version of linear response
theory [128].

Assume that the variables B and C coupled to the fields hB and hC in expression for
the thermodynamic potential are invariant under time reversal. Then at the thermodynamic
equilibrium, with fixed hB and hC , all currents are zero on average, that is

〈J (t)〉hB,hC
= 0, (81)

where 〈· · ·〉hBhC
denotes the average over the equilibrium distribution at given values of hB

and hC . If we start at equilibrium and increase hB, hC by small amounts δhB and δhC , then
hα(t) = hα(0) + δhαθ(t), where α = B,C. According to linear response theory, the current
at a moment t > 0 is given by

J (t) = δJB(t) + δJC(t), (82)

where

δJα(t) = 2i
∫ t

0
dt ′χ ′′

Jα(t − t ′)δhα, (83)

and χ ′′
Jα(ω) is the response function [126]. Letting χ ′′

J,α(ω) be the Fourier transform of χ ′′
J,α(t),

we then have

δJα(t) =
∫

dω

2π

2δhαχ ′′
Jα(ω)

ω
eiωt . (84)

Here, we have used the fact that J and B (resp. C) have different time reversal properties so
that the static susceptibility [126] is identically zero, i.e.∫

dω

2π

χ ′′
Jα(ω)

ω
= 0. (85)

The classical fluctuation–dissipation theorem [126] states that

χ ′′
Jα(ω) = βω

2
SJα(ω), β = 1/kBT , (86)

where SJα(ω) is the Fourier transform of the correlator

SJα(t − t ′) = 〈J (t)α(t ′)〉, α = B,C (87)

at equilibrium. Substituting (86) and (87) into (84) and integrating over time, the total flux δq

passed due to a perturbation is

δq = QJBδhB + QJCδhC, (88)

where

QJB = β

∫ ∞

0
dtSJB(t), (89)

QJC = β

∫ ∞

0
dtSJC(t). (90)

Note that both QJB and QJC are completely determined by the equilibrium correlation
functions for nonzero B and C. If we imagine that the adiabatic evolution in the space of
control parameters consists of small perturbations, as above, then the total transferred charge
after one cycle is

δq =
∮

c
{QJBdhB + QJCdhC} =

∫ ∫
sc

dhB ∧ dhCFBC, (91)
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(a) (b)

Figure 9. Topology and metastable states of (a) [2]catenane and (b) [3]catenane molecules.
Smaller rings are capable to perform directed rotational motion around the larger ring in response
to external periodic driving. In [3]catenanes, unlike [2]catenanes, directed motion can be achieved
even when only coupling strengths of smaller rings to the three stations on the larger ring are
controlled.

where c is the contour in the space of control parameters and FBC is the transport coefficient
that we have been looking for. According to Stokes’ theorem

FBC(hB, hC) = ∂QJC

∂hB

− ∂QJB

∂hC

. (92)

Equation (92) shows that the pump transport coefficient can be expressed as the circulation,
in the space of controlled parameters, of a vector Q whose components are the values of
the correlators (89) and (90) at equilibrium. Such relations indicate that the ability of
a system to perform as a stochastic pump in response to periodic perturbations, can be
inferred, in principle, from system properties at thermodynamic equilibrium. This can lead
to simplifications during numerical or perturbative analysis of molecular motor operations,
because the equilibrium properties are relatively easy to investigate. For example, calculations
of free energy landscapes are achievable for complex biological molecules such as the kinesin
molecular motor [129].

9.3. Beyond adiabatic and perturbative limits

So far, we have only discussed the systems, which are driven adiabatically slowly. Quantum-
mechanical Berry phase can be generalized to the case of non-adiabatic evolution [108].
Following this analogy, Ohkubo showed that geometric phases in stochastic kinetics also can
be considered in the non-adiabatic regime [99].

Recently, a number of exact results in the theory of the stochastic pump effect were
derived which are valid in nonperturbative and nonadiabatic regimes [130, 131]. These results
were motivated partly by recent experiments with [2]- and [3]catenane molecules [133–135].
Such molecules are made of interlocked rings, as shown in figure 9 ([n]catenane is made of n
rings.). By changing external conditions periodically, one can modulate the coupling strengths
of smaller rings to special sites (stations) on the larger ring to force the smaller ones to orbit
around the center of the larger ring while remaining interlocked with it. Astumian showed in
[136] that adiabatic modulation of couplings to stations cannot be used to select a preferred
mean orientation (clockwise or counterclockwise) of the orbit of the small ring in [2]catenane
about the large ring, but can be used to select a preferred mean orientation for the orbit of the
pair of small rings around the large ring in a [3]catenane in figure 9.
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Figure 10. A graph with a tree-like topology.

Any finite Markov chain can be represented as a graph. In such a graph, vertices
correspond to discrete states of a system and links correspond to allowed transitions. We say
that kinetic rates kji of transitions from the state i to the state j satisfy the detailed balance
condition if they can be parametrized by parameters Ei (called well depths) and Wij = Wji

(called barrier heights) such that kji = k exp[Ei − Wij ]. The detailed balance conditions
guarantee that if all parameters are time independent then the state probability vector relaxes
to a Boltzmann distribution. Every vertex in a graph, representing a Markov chain, is associated
with parameter Ei and every link corresponds to some finite Wij .

Rahav et al [130] showed that the result observed in catenane molecules is a consequence
of a much more general no-pumping theorem. They showed that for a periodic non-adiabatic
driving protocol, the average flux Q, passed through any link i − j of a graph representing a
finite Markov chain, can be written as a sum of geometric and dynamic parts, i.e.

Q =
∫ T

0
dtJdyn(t) +

∮
c

A · dp. (93)

In the first term in (93), T is the driving period. The second term in (93) is geometrical
and depends only on the path c in the space of values of the state probability vector p. The
representation (93) is not an explicit solution because the evolution of the probability vector
p is not assumed to be known. However, the authors of [130] showed that when detailed
balance conditions are imposed, even on time-dependent kinetic rates, the dynamic part in
(93) becomes identically zero. Thus, even for rapid variation of the control parameters, the
flux is purely geometrical. Moreover, they showed that the connection A is independent of
Ei . As a consequence, if some well depths Ei are varied, while Wij remain fixed, and if the
probability vector returns to the initial values at the end of the evolution, the geometric term
becomes also zero because

∮
c A · dp = A · ∮

c dp = 0.
Chernyak and Sinitsyn [131] derived and proved the pumping-restriction theorem, which

includes the no-pumping theorem of [130] as a special case. The pumping-restriction theorem
makes two assertions. The first assertion tells us that not all pumped currents, i.e. time-averaged
currents induced by a cyclic evolution of parameters, are independent. More precisely, pump
currents through various links can be considered as vectors in a vector space whose dimension
is equal to the maximum number of time-dependent barriers Wij such that removing the links,
corresponding to these barriers, does not break the graph into disjoint components. A trivial
consequence of this theorem is that the pump current through any link on a tree-like graph, such
as the one in figure 10, is exactly zero. Indeed, removing any link from a tree (not touching the
vertices) breaks it into disjoint components, and according to the pumping-restriction theorem,
the pump current on such a graph should be zero.

The result for a tree graph is expected because, for periodic evolution of parameters, the
flux through any link on such a graph should eventually return through the same link moving
in the opposite direction since initial and final state probability vectors coincide. Hence,
the integrated current must be zero. The pumping-restriction theorem leads also to many
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(a) (b) (c)

Figure 11. (a) A graph representing a six-state Markov chain. (b) Removing the link 2–3 alone
does not break the graph into disjoint components. (c) Removing links 2–3 and 3–4 breaks the
graph.

less obvious predictions. For example, in the graph in figure 11(a), one can, by perturbing
periodically well depths Ei and also only the barriers related to links 2–3 and 3–4, induce
a nonzero pump current, because removing any one of the links 2–3 or 3–4 does not break
the graph into disjoint components, as is shown in figure 11(b). According to the theorem,
however, a pump current through any link in figure 11(a) will then be proportional to the pump
current through the link 2–3 with a constant proportionality coefficient because removing both
links 2–3 and 3–4 we would break the graph into disjoint parts, as is shown in figure 11(c).
Hence the dimension of the pump current space in this case is only 1. The pumping-restriction
theorem also predicts that an arbitrary periodic driving of parameters on the links 1–2 and
4–5 in figure 11 alone cannot induce the pump effect, because removing any of those links
would break the graph. That should suffice to explain and illustrate the first assertion of the
pumping-restriction theorem. As for the second assertion of the theorem, it states that if pump
currents are allowed, and if there are restrictions on their values predicted by the first part of
the theorem, then these restrictions do not depend on parameters Ei .

The existence of exact results, such as the no-pumping and the pumping-restriction
theorems, tells us that there are strong constraints which must be satisfied by control parameters
in order to induce a directed motion of a nanoscale device. At this stage it is unclear whether
these theorems can be extended to include current fluctuations, or whether the pumping-
restriction theorem can be related to other exact results in non-equilibrium thermodynamics,
such as the Jarzynski equality [137], or the invariant quantities in a shear flow found in
[132]. We note that a number of fluctuation theorems have been found for applications to
ratchet systems and molecular motors [138–143], but their connections to geometric phases
are unknown.

10. Geometric phases and molecular motors

Applications of geometric phases in mathematical robotics are based on the same geometric
structure as the one discussed by Shapire and Wilczek to describe the locomotion of living
cells [71, 72]. As in the case of living organisms, the internal motions of robots are confined
to a particular region as the robot performs its tasks. Nevertheless, as the robot interacts with
its environment, periodic changes in the internal control variables can lead to nonperiodic
effects on the robot position or on its surroundings. The reader is referred to [15, 144, 145] for
an introduction to the geometric theory of robotic motion and for references to its extensive
literature. In this section we demonstrate how geometric phases in stochastic kinetics appear
in the control theory of the molecular machines.

Many biological molecules resemble motors, and sometimes operate according to
principles similar to those which govern the macroscopic machines used by humans. Molecular
motors are ubiquitous in living organisms. They are employed, for example, for transport, for
injecting viruses into living cells, for unzipping the DNA and for storing energy [146, 147].
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Figure 12. F1-subunit of the natural molecular motor F0F1-ATPase with attached magnetic needle
in external magnetic field B.

Experimental progress in the synthesis and observation of molecular motors has been
remarkable. The reviews [148, 149] describe many recently synthesized molecules such
as rotaxanes and catenanes, which are able to perform prescribed mechanical movements in
response to external stimulus. Moreover, the experimental techniques for observing molecular
motion have reached a level where discrete steps in a molecular motor operation can be
observed [150, 151]. It has become feasible to measure noise and even the tails of the
probability distributions of reaction events [150, 152, 153].

Better understanding of the working principles of nanoscale machines will make it possible
to rebuild them to perform specialized tasks. In living cells, the molecular motor F0 F1-ATPase
can convert the energy of an H+ gradient into chemical energy stored in ATP. This natural
molecular motor was rebuilt recently by modifying its F1-subunit and was used to store
the work done by an external magnetic field as chemical energy [154]. Another artificial
modification of this molecular motor, shown in figure 12, was used in [155] to demonstrate
the rotation of a metallic bar, powered by ATP.

At the molecular level, fluctuating forces are considerably stronger than typical external
fields. Unlike macroscopic machines, molecular motors such as F0F1-ATPase absorb chemical
energy in discrete portions and randomly. This leads to the so-called shot noise in their
operations. Molecular motors are also affected by strong thermal fluctuations. These
fluctuations are not merely a theoretical complication. For example, vesicle transport via
the ‘hitchhiking’ mechanism, proposed in [156] depends on stochasticity in an essential way.
Single molecule experiments show that noise measurements can provide important information
about molecular structure [150] which can, in turn, be employed to uncover details of the
working cycle of a molecular motor. Thus, the theory of molecular motor operations must
take stochastic effects into account.

Much effort has been devoted to modeling the thermodynamics of molecular motors
using the models of stochastic pumps and ratchets [84–87, 157]. This work has been
reviewed in [158–161]. In contrast, appreciation of the role of geometric phases in
molecular motor operations is relatively recent and is still in an early stage of development
[100, 101, 124, 136, 162–164].
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To illustrate that role, we consider a model inspired by the structure shown in figure 12,
where the metallic bar is magnetic and the whole structure is placed in a rotating magnetic field.
The molecule has an approximate three-fold symmetry (except for its rotating γ -subunit). If
the magnetic coupling to the needle is weaker than the size of the potential barrier W between
any pair of metastable states, the kinetics can be minimally described by a three-state model
with some stochastic transition rates between any pair of neighboring states, as shown in
figure 3. Near equilibrium, rotational steps of the γ -subunit in both directions were observed
experimentally [165]. Due to the magnetic needle, it is possible to control the relative energies
of the three states and of the potential barriers, which separate them, by applying an external
rotating magnetic field. We will be interested in the number of full rotations of the needle,
and hence of the γ -subunit attached to it, as it is driven in a neighborhood of thermodynamic
equilibrium.

One can parametrize kinetic rates of an arbitrary Markov chain with detailed balance
conditions in the following way, using the terminology ‘well-depth’ and ‘barrier height’ which
was introduced in section 9.3: for sites i and j , the transition rate from j to i is kij = k eEj −Wij ,
where Ej is the well-depth j , and Wij = Wji is the barrier height between sites i and j .
Here, the energy scale is kBT = 1, where T is temperature and kB is the Boltzmann constant.
The parameter k is a constant rate coefficient which sets the timescale and depends on the
properties of the solution, i.e. on environment of the molecular motor. Imitating the procedure
that was used in section 5, one finds that the moment generating function of the number of
full rotations in the clockwise direction (counting counterclockwise rotations with a negative
sign) is again given by equation (33), but with the new Hamiltonian that reads

Ĥ (χ) =
⎛
⎝−(k21 + k31) k12 e−iχ/3 k13 eiχ/3

k21 eiχ/3 −(k32 + k12) k23 e−iχ/3

k31 e−iχ/3 k32 eiχ/3 −(k13 + k23)

⎞
⎠ . (94)

The magnetic field modulates the parameters Ei and Wij , and hence kji . The three-fold
symmetry of the molecule can be taken into account by assuming the following dependence
of the parameters Ei on the components Bx and By of the magnetic field:

E1 = by,

E2 = bx cos(π/6) − by cos(π/3),

E3 = −bx cos(π/6) − by cos(π/3),

(95)

where bx/y = −Bx/y |M| and M is the magnetization vector of the needle. One can derive
(95) by assuming that the first metastable state corresponds to the magnetic bar pointing along
y-axes and the other two are generated by a rotation of the needle by angles 2π/3 and 4π/3.
For the magnetization energy ε, we use units where ε = −B · M. Suppose that the maxima
of the potential barriers are shifted from the potential well minima by an angle φ. Thus a
reasonable assumption for the dependence of the barrier heights on the magnetic field would
be

W12 = W + bx sin(φ) + by cos(φ),

W23 = W + bx cos(π/6 + φ) − by cos(π/3 − φ),

W13 = W − bx cos(π/6 − φ) − by cos(π/3 + φ).

(96)

According to the procedures of [100], which have been discussed in section 5, the moment
generating function of the number of full rotations of the needle is determined by the eigenvalue
with the lowest real part and corresponding eigenvectors of (94). While it is not convenient to
study the exact expressions for eigenvectors of a 3×3 matrix, it is not hard to derive the lowest
cumulants of the rotation numbers by treating the counting parameter χ perturbatively, as in
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[166]. As in the example of the reversible ratchet, the principle of detailed balance imposes
constraints which imply that, on average, the needle rotation becomes a purely geometric
phase effect and that the average number of needle rotations per cycle can be expressed as an
integral over a surface Sc whose boundary is the contour c in the (bx, by) parameter space,
namely

〈n〉 =
∫ ∫

Sc

dby dbxF (bx, by). (97)

The ‘Berry curvature’ F(bx, by) determines the sensitivity of the system to external driving
forces. Regions with larger values of the function F(bx, by) correspond to parameter values at
which system makes more rotations, on average, in response to periodic parameter variations.
For a symmetric barrier configuration (φ = π/3), the expression for F(bx, by) is particularly
simple, namely

F(bx, by) = 3
√

3 e3
√

3bx/2+3by

(e
√

3bx/2 + e3by/2(1 + e
√

3bx ))3
. (98)

Positivity of the Berry curvature in figure 13 means that the maximum number of rotations
per one cycle is achieved for the contour that encloses the whole bright area in figure 13 from
a very large distance in the parameter space. For any such a large contour, the result of the
integration (97) of the Berry curvature remains approximately the same and can be estimated
by setting the limits of the integration in (97) to infinities, which gives∫ ∞

−∞

∫ ∞

−∞
dby dbxF (bx, by) = 1. (99)

The result shows that the system in figure 12 makes, on average, at most one net rotation
for every rotation of the magnetic field along a closed non-intersecting contour. This result
does not require that the coupling to the magnetic field be the largest energy scale in the
model. In our calculations we always assumed that W > bx/y , in order to use a three-state
approximation. The resulting quantization happens only on average, and the needle is allowed
to make many stochastic steps before the rotation of the magnetic field is complete.

By comparing the number of rotations of the structure with the absolute value of the field,
one can determine the function F(bx, by) experimentally. Figure 13 shows that F(bx, by) has
the same three-fold symmetry as the kinetic model in figure 3. Its values can therefore reveal
details of the internal molecular structure and of possible components in the effective kinetic
model. Interestingly, the theory predicts that the geometric phase and the function in figure 13
are independent of the parameter k and of the size of an unperturbed barrier W . This means,
in particular, that the function F(bx, by) can be robust against variations of the viscosity of
the solution. This prediction is valid as long as the magnetic field rotation is adiabatically
slow and the system always remains close to thermodynamic equilibrium. Thus we predict a
universality of the motor response, in a sense that it does not depend on the solution viscosity,
which can be tested experimentally. If the molecular motor is subject to additional forces,
such as a proton gradient, which drive it beyond the regime of approximate thermodynamic
equilibrium, this universality may no longer hold.

11. Discussion

The analogy between the evolution of generating functions in stochastic processes and the
evolution of quantum-mechanical wavefunctions allows us to consider complex stochastic
processes using the framework of quantum mechanics. In this review we discussed how, due
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Figure 13. The contour plot of the ‘Berry curvature’ F(bx, by) from equation (97), as a function
of control parameters bx and by . Brighter areas correspond to larger values of F(bx, by) and the
dark area corresponds to regions where F(bx, by) ≈ 0.

to this analogy, quantum-mechanical Berry phases appear to have counterparts in classical
stochastic processes. The quantum pump effect, whose origin can be attributed to a Berry
phase, has a stochastic counterpart with a similar geometric phase interpretation. We also
showed that, as in quantum mechanics, geometric phases can influence the motion of coarse-
grained degrees of freedom in stochastic processes after elimination of fast variables. This
similarity raises questions about the possibility of further analogies.

Berry phases are responsible for a number of important effects in solid state physics,
such as the quantum Hall effect. Although it is unclear whether or not similar effects can
be discovered in classical dissipative systems, several features of the SPE have quantum-
mechanical counterparts. We showed in section 10 that the SPE can be quantized, i.e. the
number of system rotations per cycle can be some integer. Similar quantization has been
considered as a special feature of the quantum pump [167] and the quantum Hall effect [19].
There are also examples of fractionally quantized responses of stochastic systems [133, 136].
Usually quantization is achieved in the limit of the maximum efficiency of the stochastic
system response along a cycle in the space of control parameters. While such limits are easy
to find in simple models, little is known about how to determine them in the general case.
One possibility was proposed by Shi and Niu in [125]. Examining the diffusion in a periodic
potential they related the quantization of the stochastic ratchet current to a Chern number. It
is possible that this observation can be generalized within the Olson-Ao description of the
Bloch–Peierls–Berry dynamics [169]. Another type of quantization was found in dissipative
transport of a particle on a periodic lattice with non-Hermitian evolution [168].

Certainly, there are important differences between quantum and classical systems. The
quantum Hall effect and the quantum theory of polarization require the existence of the Fermi
sea, and thus are intrinsically many-body effects which rely on the Pauli principle for a
multi-particle fermionic wavefunction. To some extent the Pauli principle can be mimicked
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in stochastic processes by means of exclusion interactions, as in the theory of the shot noise
in electronic circuits [103]. The model we discuss in section 5 provides a simple example
of a geometric phase effect which is induced by exclusion interactions. Even in simple
systems, interactions lead to important effects, such as violation of the assumptions of the no-
pumping theorem [130, 136]. It is therefore important to explore geometric phases in strongly
interacting many-body stochastic systems, such as in reaction-diffusion models and multistate
exclusion processes [170, 171]. In quantum field theories, Berry phases are responsible for
chiral anomalies [172]. Such anomalies play an important role in the quantum pump effect
and in the theory of the quantum Hall effect [173]. It would be interesting to know whether the
quantum-statistical analogies discussed in this review can be used to find stochastic phenomena
analogous to chiral anomalies.

Conversely, quantum theory can benefit from the analogy with stochastic kinetics. For
example, one can explore the possibility of a quantum-mechanical analogue of the pumping-
restriction theorem. One can also consider geometric phases in the evolution of the counting
statistics in quantum-mechanical systems [174]. Fractional quantization of pumping in
stochastic systems, such as in [3]catenanes [133], may shed new light on the nature of
quasiparticles in the fractional quantum Hall effect.

One of the goals of this review is to emphasize that geometric phases can play an important
role in the theory of molecular motors. We showed that calculations of geometric phases are
important in designing molecular motors and specifying their operations. Such calculations are
not based on direct numerical solutions of differential equations with explicitly time-dependent
parameters. Instead, by applying the theory of geometric phases it is possible to understand
molecular motor operations using knowledge of only the energy landscape of a molecule
as function of control parameters. The theory also suggests new response coefficients for
experimental investigation. Measurements of the Berry curvature should provide new insight
into the structure of motor molecules.

Molecular machines, driven by external time-dependent forces, obey simple universal
laws, which remain to be explored and whose existence is indicated by the discovery of
geometric phases in stochastic kinetics and exact universal results such as pumping-restriction
theorems and fluctuation theorems. In the future, the science of controlled mesoscopic systems
will be transformed by the investigation of these laws.

Acknowledgments

The author thanks Allan Adler for insightful comments, which were used to substantially
improve this review. The author also thanks Qian Niu and Ilya Nemenman for useful
discussions and Maryna Anatska for the help with illustrations. This work was funded in
part by DOE under contract No. DE-AC52-06NA25396.

References

[1] Berry M V 1984 Proc. R. Soc. Lond. A 392 45
[2] Chruscinski D and Jamiolkowski A 2004 Geometric Phases in Classical and Quantum Mechanics (Boston:

Birkhäuser)
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